by Marshall Brain
If you have used a computer for more than five minutes, then
you have heard the words bits and bytes. Both RAM and hard disk capacities are
measured in bytes, as are file sizes when you examine them in a file viewer.
You might hear an advertisement that says, "This
computer has a 32-bit Pentium processor with 64 megabytes of RAM and 2.1
gigabytes of hard disk space." And many HowStuffWorks articles talk about
bytes (for example, How CDs Work). In this article, we will discuss bits and
bytes so that you have a complete understanding.
Decimal Numbers The easiest way to understand bits is to
compare them to something you know: digits. A digit is a single place that can
hold numerical values between 0 and 9. Digits are normally combined together in
groups to create larger numbers. For example, 6,357 has four digits. It is
understood that in the number 6,357, the 7 is filling the "1s place,"
while the 5 is filling the 10s place, the 3 is filling the 100s place and the 6
is filling the 1,000s place. So you could express things this way if you wanted
to be explicit:
(6 * 1000) + (3 * 100) + (5 * 10) + (7 * 1) = 6000 + 300 +
50 + 7 = 6357
Another way to express it would be to use powers of 10.
Assuming that we are going to represent the concept of "raised to the
power of" with the "^" symbol (so "10 squared" is
written as "10^2"), another way to express it is like this:
(6 * 10^3) + (3 * 10^2) + (5 * 10^1) + (7 * 10^0) = 6000 +
300 + 50 + 7 = 6357
What you can see from this expression is that each digit is
a placeholder for the next higher power of 10, starting in the first digit with
10 raised to the power of zero.
That should all feel pretty comfortable -- we work with
decimal digits every day. The neat thing about number systems is that there is
nothing that forces you to have 10 different values in a digit. Our base-10
number system likely grew up because we have 10 fingers, but if we happened to
evolve to have eight fingers instead, we would probably have a base-8 number
system. You can have base-anything number systems. In fact, there are lots of
good reasons to use different bases in different situations.
Bits Computers happen to operate using the base-2 number
system, also known as the binary number system (just like the base-10 number
system is known as the decimal number system). The reason computers use the
base-2 system is because it makes it a lot easier to implement them with
current electronic technology. You could wire up and build computers that
operate in base-10, but they would be fiendishly expensive right now. On the
other hand, base-2 computers are relatively cheap.
So computers use binary numbers, and therefore use binary
digits in place of decimal digits. The word bit is a shortening of the words
"Binary digIT." Whereas decimal digits have 10 possible values
ranging from 0 to 9, bits have only two possible values: 0 and 1. Therefore, a
binary number is composed of only 0s and 1s, like this: 1011. How do you figure
out what the value of
the binary number 1011 is? You do it in the same way we did
it above for 6357, but you use a base of 2 instead of a base of 10. So:
(1 * 2^3) + (0 * 2^2) + (1 * 2^1) + (1 * 2^0) = 8 + 0 + 2 +
1 = 11
You can see that in binary numbers, each bit holds the value
of increasing powers of 2. That makes counting in binary pretty easy. Starting
at zero and going through 20, counting in decimal and binary looks like this:
0 = 0
1 = 1
2 = 10
3 = 11
4 = 100
5 = 101
6 = 110
7 = 111
8 = 1000
9 = 1001
10 = 1010
11 = 1011
12 = 1100
13 = 1101
14 = 1110
15 = 1111
16 = 10000
17 = 10001
18 = 10010
19 = 10011
20 = 10100
When you look at this sequence, 0 and 1 are the same for
decimal and binary number systems. At the number 2, you see carrying first take
place in the binary system. If a bit is 1, and you add 1 to it, the bit becomes
0 and the next bit becomes 1. In the transition from 15 to 16 this effect roles
over through 4 bits, turning 1111 into 10000.
Bytes Bits are rarely seen alone in computers. They are
almost always bundled together into 8-bit collections, and these collections
are called bytes. Why are there 8 bits in a byte? A similar question is,
"Why are there 12 eggs in a dozen?" The 8-bit byte is something that
people settled on through trial and error over the past 50 years.
With 8 bits in a byte, you can represent 256 values ranging
from 0 to 255, as shown here:
0 = 00000000
1 = 00000001
2 = 00000010
...
254 = 11111110
255 = 11111111
In the article How CDs Work, you learn that a CD uses 2
bytes, or 16 bits, per sample. That gives each sample a range from 0 to 65,535,
like this:
0 = 0000000000000000
1 = 0000000000000001
2 = 0000000000000010
...
65534 = 1111111111111110
65535 = 1111111111111111
Bytes are frequently used to hold individual characters in a
text document. In the ASCII character set, each binary value between 0 and 127
is given a specific character. Most computers extend the ASCII character set to
use the full range of 256 characters available in a byte. The upper 128
characters handle special things like accented characters from common foreign
languages.
You can see the 127 standard ASCII codes below. Computers
store text documents, both on diskand in memory, using these codes. For
example, if you use Notepad in Windows 95/98 to create a text file containing
the words, "Four score and seven years ago," Notepad would use 1 byte
of memory per character (including 1 byte for each space character between the
words -- ASCII character 32). When Notepad stores the sentence in a file on
disk, the file will also contain 1 byte per character and per space.
Try this experiment: Open up a new file in Notepad and
insert the sentence, "Four score and seven years ago" in it. Save the
file to disk under the name getty.txt. Then use the explorer and look at the
size of the file. You will find that the file has a size of 30 bytes on disk: 1
byte for each character. If you add another word to the end of the sentence and
re-save it, the file size will jump to the appropriate number of bytes. Each
character consumes a byte.
If you were to look at the file as a computer looks at it,
you would find that each byte contains not a letter but a number --the number
is the ASCII code corresponding to the character (see below). So on disk, the
numbers for the file look like this:
F o u r a n d s e v e n
70 111 117 114 32 97 110 100 32 115 101 118 101 110
By looking in the ASCII table, you can see a one-to-one
correspondence between each character and the ASCII code used. Note the use of
32 for a space -- 32 is the ASCII code for a space. We could expand these
decimal numbers out to binary numbers (so 32 = 00100000) if we wanted to be
technically correct -- that is how the computer really deals with things.
Standard ASCII Character Set The first 32 values (0 through
31) are codes for things like carriage return and line feed. The space
character is the 33rd value, followed by punctuation, digits, uppercase
characters and lowercase characters.
0 NUL
1 SOH
2 STX
3 ETX
4 EOT
5 ENQ
6 ACK
7 BEL
8 BS
9 TAB
10 LF
11 VT
12 FF
13 CR
14 SO
15 SI
16 DLE
17 DC1
18 DC2
19 DC3
20 DC4
21 NAK
22 SYN
23 ETB
24 CAN
25 EM
26 SUB
27 ESC
28 FS
29 GS
30 RS
31 US
32
33 !
34 "
35 #
36 $
37 %
38 &
39 '
40 (
41 )
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?
64 @
65 A
66 B
67 C
68 D
69 E
70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93 ]
94 ^
95 _
96 `
97 a
98 b
99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 DEL
Lots of Bytes When you start talking about lots of bytes,
you get into prefixes like kilo, mega and giga, as in kilobyte, megabyte and
gigabyte (also shortened to K, M and G, as in Kbytes, Mbytes and Gbytes or KB,
MB and GB). The following table shows the multipliers:
Name
Abbr.
Size
Kilo
K
2^10 = 1,024
Mega
M
2^20 = 1,048,576
Giga
G
2^30 = 1,073,741,824
Tera
T
2^40 = 1,099,511,627,776
Peta
P
2^50 = 1,125,899,906,842,624
Exa
E
2^60 = 1,152,921,504,606,846,976
Zetta
Z
2^70 = 1,180,591,620,717,411,303,424
Yotta
Y
2^80 = 1,208,925,819,614,629,174,706,176
You can see in this chart that kilo is about a thousand,
mega is about a million, giga is about a billion, and so on. So when someone
says, "This computer has a 2 gig hard drive," what he or she means is
that the hard drive stores 2 gigabytes, or approximately 2 billion bytes, or
exactly 2,147,483,648 bytes. How could you possibly need 2 gigabytes of space?
When you consider that one CD holds 650 megabytes, you can see that just three
CDs worth of data will fill the whole thing! Terabyte databases are fairly
common these days, and there are probably a few petabyte databases floating
around the Pentagon by now.
Binary Math Binary math works just like decimal math, except
that the value of each bit can be only 0 or 1. To get a feel for binary math,
let's start with decimal addition and see how it works. Assume that we want to
add 452 and 751:
452
+ 751
---
1203
To add these two numbers together, you start at the right: 2
+ 1 = 3. No problem. Next, 5 + 5 = 10, so you save the zero and carry the 1
over to the next place. Next, 4 + 7 + 1 (because of the carry) = 12, so you
save the 2 and carry the 1. Finally, 0 + 0 + 1 = 1. So the answer is 1203.
Binary addition works exactly the same way:
010
+ 111
---
1001
Starting at the right, 0 + 1 = 1 for the first digit. No
carrying there. You've got 1 + 1 = 10 for the second digit, so save the 0 and
carry the 1. For the third digit, 0 + 1 + 1 = 10, so save the zero and carry
the 1. For the last digit, 0 + 0 + 1 = 1. So the answer is 1001. If you
translate everything over to decimal you can see it is correct: 2 + 7 = 9.
To see how boolean addition is implemented using gates, see
How Boolean Logic Works.
Quick Recap
• Bits are binary digits. A bit can hold the value 0 or 1.
• Bytes are made up of 8 bits each.
• Binary math works just like decimal math, but each bit can
have a value of only 0 or 1.
There really is nothing more to it -- bits and bytes are
that simple!